
Revista de Sistemas de Informação da FSMA
 n. 9 (2012) pp. 16-23

http://www.fsma.edu.br/si/sistemas.html

16

Abstract — Agile software development has gained importance

in the industry because of its approach on the issues of human
agility and return on investment. This paper shows how Scrum
agile software project management methodology has been
deployed and adapted to the model of software project
management of a research and development laboratory. As a
result of this deployment, experiences and lessons learned in
seven real projects developed by the authors are reported.

Keywords — Scrum, Project management

I. INTRODUCTION

oftware development organizations have become more
interested in agile methodologies, whose focus is client

collaboration, individual value and adaptation to change. This
interest has grown because these methodologies have shown
productivity gains in several different software development
project types.
 The choice of the most adequate software methodology for
software development neither is a trivial task nor guarantees
the project’s success. Nevertheless, agile methodologies have
caught the eye of software companies, given the evidence of
the productivity increase they provide [4].
 The original movement that helped improve the software
development sector introduced the methodology idea, that is, a
disciplined approach for software development with the goal
of making the process more efficient and predictable [3].
 The definition of an agile methodology was created in
February 2001 in a meeting of software process
methodologists that resulted in what is now known as the Agile

Igor Ribeiro Lima is a graduate student at the Systems Engineering coruse

(PPGESIS) at the Departament of Engineering (DEG) of the Federal
University of Lavras (UFLA) and a project manager at the Research and
Development lab where the study was conducted. E-mail:
igorlima@comp.ufla.br.

Tiago de Castro Freire a project manager at the Research and Development
lab where the study was conducted. E-mail: kuruma@bsi.ufla.br.

Heitor Augustus Xavier Costa is a full professor at tne Computer Science
Department (DCC) of the Federal University of Lavras (UFLA). E-mail:
heitor@dcc.ufla.br.

Manifesto [8]. This manifesto is a simple and concise
declaration that seeks to change the traditional lens that has
been used to see software development. Its intention is to value
[9]: i) of individuals and interactions over tools and processes,
ii) of working software over detailed documentation, iii) of
client collaboration over contract negotiation and iv) of change
adaptation over plan following. The Agile manifesto is based
on 12 principles [8]:

1. Making customer satisfaction a priority though
continuous and frequent deliveries;

2. Embrace requisite change, even in an advance project
phase;

3. Deliver software frequently, in the smallest possible
time frame;

4. Create synergy between the business and development
teams in order to allow them to work together daily;

5. Keep a motivated team providing the environment, the
support and confidence needed;

6. Allow efficient information spread through face to face
conversation;

7. Having a working system is the best progress
measurement;

8. Promote sustainable development through agile
processes;

9. Continuous attention to technical excellence and to a
good project increase agility;

10. Be simple;
11. Allow teams to self organized using the best

architectures, requisites and projects.
12. Make a reflection in regular intervals on how to

become more efficent and adjust and optimize
behavior.

Adapting and Using Scrum in a Software
Research and Development Laboratory

Igor Ribeiro Lima, Tiago de Castro Freire, Heitor Augustus Xavier Costa

S

Lima, I. R., Freire, T. C., Costa, H. A. X. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 16-23

17

In literature we can find several initiatives for the

development of software that incorporate such principles, such
as Extreme Programming (XP) [19, 20, 22, 23, 24, 25],
Scrum [1, 20, 25, 26, 27, 28], Crystal [1, 13, 14], Feature
Driven Development (FDD) [1, 20, 21, 22], Dynamic Systems
Development Method (DSDM) [15, 17, 19] e Adaptative
Software Development (ASD) [15, 16, 17, 18].

In this paper, our goal is to present the experience and the
thought process of the development team at a Research and
Development Lab on the use of the agile methodology Scrum
for software project management that included constant
changes and interventions from the client involved in those
projects. We will discuss, for instance, the way software
architecture proposals and ways to document requisites arise,
which is due to the fact that team members can be assigned to
different tasks (dynamic allocation) which allows for a macro
view of the software. Besides, daily meetings also allow for
team members to find direct solutions, because there is
involvement of all members, which allows them to become
more effective in their work.

The agile methodology Scrum was chosen for out Lab
because it is the most used by the companies that adopt the
agile principles [10, 11, 12]. This choice was also due to the
adaptability of this methodology and to the fact that it can
respond quickly to constant changes in software projects.

This work is organizes as follows. Scrum concepts and
fundamentals are described briefly in section 2. The
consolidation of the agile culture in the Research and
Development and the search for a unified, adapted and
adequate process are shown in section 3. The lessons learned
using the agile methodology are described in section 4 and
final considerations are presented in section 5.

I. SCRUM

Scrum was developed by Jeff Sutherland in 1993 [28] and

its goal is to be a development and management methodology
that follows the principles of the agile methodology. The
Scrum team is composed by [5]:

• Team: its the development project team, composed by up
to ten developers in which each member has a specific
skill. Nevertheless, members are not banned from
performing task different from their expertise). Thus, the
team will become more integrated and teams members
will know better the software, minimizing the impact of
another member’s dismissal.

• Product owner. He is the one with the responsibility on
the software functionality specification and to solve any
doubts that might arise during development. He is the
client’s representative that must watch the project closely
and help in the construction of a software that answers
completely to the client’s needs.

• Scrum master. He is the responsible to lead the team and

to avoid any hurdles that might arise during the process.
A hurdle is something that might impede a member from
performing his work. For instance, requests to perform
activities not related to the project, problems in the test
server, difficulties with the technology and unplanned
requisites might be examples of hurdles that might cause
problems to the sprint.

In our lab, the team is composed of 4 to 7 members, an

amount that has been efficient in improving communication.
The product owner is a member of the lab that stays constantly
at the client, a reversal of the usual strategy that was due to the
fact that it was difficult to keep the client constantly in the lab.
The Scrum Master for each project is selected by the Lab’s IT
coordinator.

Scrum is based in practices represented by (i) daily
meetings, (ii) sprint planning meetings, (iii) sprint review
meeting, (iv) backlog sorting and (v) release presentation [2].
Daily meeting are performed with the team members standing
in front of the kanban, which is a set of cards (post-it) that
indicate the status of a specific task, such as, To Do, Doing or
Done (Figure 1).

Meetings last approximately 15 minutes, and in them we
discuss questions from team members , what everyone intends
to do and what were the hurdles found during that day so that
the Scrum Master becomes aware of them and may eliminate
them [2].

Figure 1 - Kanban [6]

Lima, I. R., Freire, T. C., Costa, H. A. X. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 16-23

18

Figure 2 - Sprint [7]

A sprint corresponds to a development cycle and must last

from two weeks to a month (Figure 2). The goal of the sprint
planning meeting is to present the backlog items and to
estimate the tasks.

The backlog is a list of software requisites sorted according
to their priority, allowing the requisites to be put into
development according to their importance.

One of the methods used to estimate tasks is the planning poker (

Figura 3), whose goal is to allow each member to choose a
card with the task length estimative. The members that choose
the smaller and the bigger estimative discuss the reasons why
their estimative differ and then there are up to nine rounds
until team members come to a consensus [2].

The sprint review is performed in a meeting where a
retrospective of the sprint is analyzed, in its positive and
negative points identified and analyzed. Hence, it is possible to
keep the strong points and create strategies to improve the
weaknesses. This way we have feedback from the development
team and improve and evolve all team members [2].

The backlog sorting is performed according to the priority
of each item that is calculated from the importance of the
functionalities for the client. That way, items with higher
priority are implemented before the lower priority ones
increasing client satisfaction [2].

Figura 3 - Planning Poker [29]

A release is a function software version that can be
delivered to the client for homologation. For each release, a
presentation of the functional part is made to the client. This
way, the client can keep up with the project and validate the
systems in parts.

II. SCRUM ADAPTATION

Scrum is not a process or a technique for product

development, but an iterative and incremental framework [28].
This framework may be used with different processes and
techniques working well in an environment of constant change
[5].

Scrums reveals what might be corrected in the team and its
essence is strongly connected to the personality of the team
members. This way, one must constantly validate the
decisions, practices and process according to the principles
and values the team holds dear [4]. Scrum was adopted after
some lab members have heard reports of similar experiences in
scientific events that approached the topic of agile software
project development and management.

After an informal debate on whether it should be chosen for
our Lab, we came to the conclusion that Scrum could be
adapted and would answer better to constant change from the
client (Agile Principle 1). Hence, we could have frequent
deliveries with more value to the client, with a focus on the
maximization of the return on the investment (Agile Principle
3). Besides, it would avoid waste and prioritize
communication and the visibility of the projects progress, so
that team members would always know what needed to be
done and what was being done (Agile Principle 4).
Nevertheless, we felt the need to adapt it to the scenario where
it was adopted (a Research and Development Lab), in order to
adequate it to reality and to provide the best return to our
clients.

Before the adoption of Scrum there were no well defined
and well established development and management processes
in the Lab. Project follow up was not done daily – there were
only delivery schedules between teams and when one deadline
was about to expire, the responsible would come and ask for
results. In case of danger to the deadlines and subsequent
delaying of activities, team members had to do overtime in
order to fulfill the deadlines. In other words, the Lab had no
previous solid experience in the process of software
development. Probably, one of the reasons for that was the fact
that the Lab was quite recent and has no long experience on
software development.

During the adaptation of Scrum, we paid attention to
identify which changes in the organization culture were
necessary to adopt the concepts and principles of agility. For
that, we considered the four values we pointed out before on
the agile manifesto. For this agile culture to become
consolidated, we needed to search for an unique process,
adapted and adequate to the team reality.

Lima, I. R., Freire, T. C., Costa, H. A. X. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 16-23

19

A. Multiple Projects

Because of corporate secrecy, the location of the Research
and Development Lab, the names of the developed projects
and our clients will be omitted.

All projects were developed in a Software projects Lab
inside a University in the State of Minas Gerais. In this Lab,
the teams are organized according to the technical abilities and
the availability of its members.

These projects are software systems to help with the
environmental management of a governmental organization
from the state of Minas Gerais.

B. Caracterization of Teams and Used Technologies

Project teams are, in general, composed by three to five
programmers, one or two database administrators, one
business analyst, one or two professionals caring for testing
and one to three professionals dedicated to system
documentation.

The development team in each project is composed by
experiences developers and interns and in each project we
have at least two professionals with at least three years
experience while the database and business analysis teams
have at least two years experience. The testing and
documentation teams are composed by a mix of experienced
professionals and interns.

Each team’s composition depends on the complexity of the
project. One of the high complexity projects consisted in
perform geoprocessing of a specific area of Minas Gerais. In
this team, the project was done by five programmers, two
database administrators and five persons in software quality.

Another project that was not as complex as the former
consisted in filling simple databases for form emission. In this
project, we need only three programmers, one database
administrator and two persons in software quality.

A third project of average complexity consisted in a virtual
environment to support the teaching and learning process in
the Minas Gerais economic and ecologic zoning system
distance learning. In this project, we required two
programmers, one database administrator and a single person
in software quality.

All projects were developed in the Java programming
language (J2EE - Java 2 Enterprise Edition), using MVC
frameworks (Model - View - Controller), Spring1 and
VRaptor2 and in the front-end layer we used Flex, JavaScript
and JSP (Java Server Page). Oracle3 and Postgres4 were used
as the database management systems.

Communication among team members is constant and
iterative, according to the Scrum methodology. That means
that meetings are scheduled daily in fixed time slots with all
team members in a single room, with all members standing.

Communication is performed preferably face to face instead

1 http://www.springsource.org/
2 http://vraptor.caelum.com.br/
3 http://www.oracle.com/index.html
4 http://www.postgresql.org/

of using written documents and a single project team works in
a single room, in order to increase interaction among its
members (Agile Principle 6).

Given the integration between development and testing
teams, it was not necessary to wait doe sprint functions release
for the testing to begin. In a single project the testing team
used the TDD (Test Driven Development) technique. This
project was the least complex one, because we needed to let
the testing team understand better the process. In the other
projects we used unit and behavioral tests. Hence, as soon as a
system function was finished, the test ran and in case of
problems, the correction was requested.

C. Adapting Scrum

The project scope is reviewed at each sprint panning so that
the team can dedicate itself to the highest priority tasks (Agile
Principle 7). At each review, the client is free to adjust and
review the priority of each function (Agile Principle 2).

Activity planning is done in a conference room. Usually,
activity planning includes all team members and least close to
eight hours, being divided in three parts (Agile Principle 10).
The first part is the moment when team members decide what
is going to be done. The second part is to debate how the
activities will be developed and for the development team to
list the necessary tasks to implement the planned activities.
The third part is to estimate each task length, based on a team
consensus on values between 1 and 24 hours for each task at
hand.

Estimation is done by team members using cards with the
Fibonacci sequence (planning poker). Each team member
selects a card that he thinks corresponds to the task length and
after all cards are chosen, they are exposed. The members that
chose the highest and smallest lengths discuss the reasons that
took them to make that choice and the cards are played again
until the team comes to a consensus. Values outside the
Fibonacci sequence are chosen when there is no consensus
after three rounds of poker. Hence, teams may come to a
consensus using intermediary values.

During development the team met daily and each developer
reports what he did and how he intends to do the next task. In
case a developer reports on a hurdle, technical issues are
discussed briefly after the daily meeting. The idea is to steer
the developer with the hurdle towards a possible solution. The
place of the daily meeting is in the development environment
itself, where the information on project progress is stuck to the
walls, such as burndown, product backlog, sprint backlog and
error report (Agile Principle 12).

This plain sight management intends to make available all
necessary information in a simple and easy to understand way.
This way, work becomes less arduous and the quality of the
software created increases (Agile Principle 9).

Daily meetings do not happen at a fixed time, alternating
between mornings and afternoons. The time is a consensus
between developers that have flexible work hours in order to
have all members in all meetings.

Lima, I. R., Freire, T. C., Costa, H. A. X. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 16-23

20

In spite of the team and the environment being self managed
(or self organized), there are some small attributions and task
delegation (Agile Principle 11). Control function belongs to all
team members, which choose the best way to work and to
fulfill the project goals. In case a member finds a difficulty in a
task or encounters a hurdle, he can ask for the help of the team,
which can help him if available. The group member that knows
about the domain at hand can help him on the specific
technical issue.

An example of this collaboration was a situation when a
programmer with little experience on the geographic
processing library was helped by other team mates (Agile
Principle 5). A more experienced programmer that knew this
library realized that other team members were also not experts
in using this library, so he dedicated some time to help them
use the functionality it provided.

In conclusion, we can state that the adaptations we
performed were flexible schedule for the daily meeting and the
integral presence of a team member (the product owner) in the
client, as a consequence of having a representative of the client
involved in the project (Agile Principle 8).

Figure 4 – Life Cycle of the Project Activities (adapted from [2])

III. LESSONS LEARNED

As we mentioned before, agile practices can bring problems to
evidence during its implantation.

Figure 4 illustrates the life cycle of a project and the
iteration between developers and clients according to the agile
methodology, which has the same iterations: i) the client
defines the scope; ii) the developers estimate deadlines; iii) the
client defines the priorities; iv) the developers implement the
functions and we go back to the beginning of the cycle where
the clients redefines the scope until all functionality desired is
delivered.

In our practice, it became clear that our lack of experience
with the agile methodologies made us misinterpret the client’s
needs, which reflected on the software development, because
development team members had no direct access to the client.
The solution was the creation of more artifacts, as the business
rule workflow, that required the presence of the client, the
Product Owner and all members of the development team.

Another thing that came into evidence was the need to
collaborate and the interest from each team members. Their
efficiency was directly related to the commitment of each
collaborator. If there was a team member that did not share the
same idea and philosophy, there was a good amount of friction
with the rest of the team, overloading one team member.

Eventually, some individuals that had difficulty working in
teams and with no characteristics of pro-activity would refuse
to help other team members with the argument that it was not
their task. There was also lack of compromise of some team
members to perform the tasks that were assigned to them,
creating a hurdle to other team members that were assigned
dependent tasks.

The teams members are both professionals and interns, the
latter being students at the university where the lab is located.
In spite of the difficulties found by the students, we could
notice that there are a learning curve pointing higher, because
they learned to deal with the practices that are involved in
software development, such as documentation, testing,
implementation and client meetings.

Only two out of the seven projects mentioned in this
experiment did not deliver in the agreed schedules, which were
renegotiated with the client. We have no measurements in
order to compare with software houses outside the academia,
but we believe that these delays were caused by the lack of
experience of team members with Scrum.

The major issues that caused the delays in those two
projects were: (i) lack of commitment from part of the team,
(ii) team members that took on more tasks than they were able
to deal with and (iii) lack of transparency and communication
among team members.

We decreased the delays by improving the criteria for team
members selection, allow for a higher success rate.

Lessons learned included the following requirements for the
usage of Scrum in an organization: (i) present the framework
for all that will use it, so that the team members know how it
works and that they will have some additional tasks in their
dailiy routine, (ii) create a pilot project for the implantation of
the framweork, in order to select personnel, (iii) observe the
possible impacts, (iv) structure training and (v) evaluate the
benefits of the adopted and implanted Scrum methodology.
During the implantation, good practices such as continuous
integration and test driven development are opportunities to
improve software quality and to make it easier to refactor
applications (conclusions to which we came in the project
where TDD was used).

It is also important to point out that Scrum usually shows
organizational problems, which become hurdles that may at

Lima, I. R., Freire, T. C., Costa, H. A. X. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 16-23

21

first cause unnecessary friction until the complete
understanding of what is a real hurdle.

The biggest problems we found were related to pro-activity
and team members’ collaboration. There are persons that feel
the need of another one to hold them responsible and to solve
the problems that arise. This shows lack of commitment, of
individuality and of initiative. Persons that think as individuals
and not as a team must be excluded from the development
team.

From the adaptations in the framework, we must understand
that some of its essential characteristics must be preserved,
such as: i) the intense communication cycle that guarantees the
expectations alignment; ii) the constant scope review that will
guarantee project cohesion; iii) the intermediate deliveries that
seek to understand the client’s needs and to correct any
failures before the project comes to an end and iv) the concept
of timebox, that forces the team to deliver, avoiding delays.

The benefits come from the principles embodied in the
Scrum agile methodology and when adapting it, one must keep
the following principles in order to get the best results from the
framework: i) strong interaction among people; ii)
communication; iii) commitment; and iv) product.

IV. FINAL THOUGHTS

Software development using agile methodologies is

becoming a bigger reality in the daily life of software
development companies. Agility brings quality to the software
development and management process. In order to add value
to the final software, one must have a well structures team that
follows the methodology and uses correct strategies.

Nowadays in Brazil there is a great interest in the
development of new software and patents so that national
technological production may be compatible with the scientific
production, as measured by national and international papers.
The adoption of modern software projects development and
management techniques such as Scrum may help lowering this
gap, establishing a bridge between quality science and
products that effectively solve problems of the national
business reality.

Scrum brings an iterative and incremental development
process for agile software development and management that
stands on four pillars: i) individuals and their iterations are
more important than procedures and tools; ii) working
software is more important that a complete documentation; iii)
collaborating with clients is superior to contact negotiation;
and iv) the ability to respond to change is more important that
having a pre-established plan.

In the context of our Research and Development Lab the
senior researchers (“project managers”) supported fully the
implementation of Scrum, the basic infrastructure was
adequate and the team members understood the new proposal
and incorporated it in their tasks.

It is important to point out that using Scrum contributed to

the education of team members that were interns (students)
and/or autonomous professionals (freelancers).

Teams were usually composed of four to seven members,
which makes communication easier. An important adaptation
was the inversion of the semantic of the product owner, for in
our context he is a member of the lab allocated at the client.
This change was made because of the difficulties associated
with having a client in the lab.

Based on the analysis of the implantation of Scrum for
project development, we could see palpable change in
software projects management and development, allowing for
easier perception of progress. The involvement and
commitment of members of the team with the results
increased, allow for more collaborative work.

We also realized that team members were motivated and
open to changes in work, which facilitated the process of
implementing and adapting Scrum. Hence, it allowed for
growth and improvement in the process, in order to answer to
the peculiarities of each project.

The next steps include the consolidation of the adopted
practices, for adaptations and corrections of the deviations
identified during development of the seven projects already
finished. We also need to use metric to evaluate formally the
gain achieved by using he agile methodology Scrum.

REFERENCES

[1] Abrahamsson, P.; Salo, O.; Ronkainen, J.; Warsta, J.

Agile Software Development Methods – Review and
Analysis. VTT Publication 478. 107 p. 2002. Available at:
<http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf>.
Last access: 21 jan 2009.

[2] Bona, C. Avaliação de Processos de Software: Um Estudo
de Caso em XP e ICONEX. Dissertação (Mestrado em
Engenharia de Produção) – Universidade Federal de Santa
Catarina, Florianópolis – 2002. Available at:
<ftp://www.ufv.br/dpi/mestrado/Gerais/TeseIconix.pdf>.
Last access : apr.2011.

[3] Fowler, M. The New Methodology. 2005. Available at:
<www.martinfowler.com/articles/newMethodology.html>.
Last access: apr.2011.

[4] Leitão, M. V. Aplicação de Scrum em Ambiente de
Desenvolvimento de Software Educativo. Monografia
(Trabalho de Conclusão de Curso) – Universidade Federal
de Pernambuco, Recife – 2010. Available at:
<http://dsc.upe.br/~tcc/20101/TCC_final_Michele.pdf>.
Last access: apr.2011.

[5] Schwaber, K.; Sutherland, J. The Scrum Guide. 2010.
Available at: <http://www.scrum.org/scrumguides/>. Last
access: mar. 2011.

[6] Hiranabe, K. Kanban Applied to Software Development:
from Agile to Lean. 2008. Available at:
<http://www.infoq.com/articles/hiranabe-lean-agile-
kanban>. Last access: apr. 2012.

[7] Murphy, C. Adaptive Project Management Using Scrum.
In: Methods & Tools - Software Development Magazine -

Lima, I. R., Freire, T. C., Costa, H. A. X. / Revista de Sistemas de Informação da FSMA n. 9 (2012) pp. 16-23

22

Programming, Software Testing, Project Management,
Jobs. 2004. Available at:
<http://www.methodsandtools.com/archive/archive.php?id
=18>. Last access: apr. 2012.

[8] Beck, K.; Beedle, M.; Bennekum, A. van; Cockburn, A.;
Cunningham, W.; Fowler, M.; Grenning, J.; Highsmith, J.;
Hunt, A.; Jeffries, R.; Kern, J.; Marick, B.; Martin, R. C.;
Mellor, S.; Schwaber, K.; Sutherland, J.; Thomas, D.
Manifesto for Agile Software Development. 2001.
Available at: <http://www.agilemanifesto.org/>. Last
access: 16 abr.2012.

[9] Vijayasarathy, L. R.; Turk, D. Agile Software
Development: A Survey of Early Adopters. In: Journal of
Information Technology Management, v. XIX, n. 2, p. 1-
8. 2008.

[10] Sutherland, J.; Viktorov, A; Blount, A. Distributed Scrum:
Agile Project Management with Outsourced Development
Teams. In: Proceedings of the 40th Hawaii International
Conference on System Sciences, 40, 2007.

[11] Catunda, E.; Nascimento, C.; Cerdeiral, C.; Santos, G.;
Nunes, E.; Schots, N. C. L.; Schots, M.; Rocha, A. R.
Implementação do Nível F do MR-MPS com Práticas
Ágeis do Scrum em uma Fábrica de Software. In: X
Simpósio Brasileiro de Qualidade de Software (SBQS).
2011. Available at:
<http://www.lbd.dcc.ufmg.br/colecoes/sbqs/2011/SBQS2
011-RE10_82940.pdf>. Last access: 23 apr 2012.

[12] Salgado, A.; Melcop, T.; Acchar, J.; Rego, P. A.; Ferreira,
A. I. F.; Katsurayama, A. E.; Montoni, M.; Zanetti, D.
Aplicação de um Processo Ágil para Implantação de
Processos de Software baseado em Scrum na Chemtech.
In: IX Simpósio Brasileiro de Qualidade de Software
(SBQS). 2010. Available at:
<http://www.lbd.dcc.ufmg.br/colecoes/sbqs/2010/RL10_a
lex_salgado.pdf >. Last access: 23 apr 2012.

[13] Cockburn, A. Agile Software Development. Addison-
Wesley Professional. 304 p. 2001.

[14] Cockburn, A. Crystal Clear – A Human-Powered
Methodology for Small Teams, including The Seven
Properties of Effective Software Projects. 2004. Available
at <http://st-
www.cs.uiuc.edu/users/johnson/427/2004/crystalclearV5d
.pdf>. Last access: 17 feb 2009.

[15] Highsmith, J. (2002); Agile Software Development
Ecosystems; Publisher: Addison Wesley; Pub Date: May
26, 2002; ISBN: 0-201-76043-6; Pages: 448.

[16] Paetsch, F., Eberlein, A., and Maurer, F. Requirements
Engineering and Agile Software Development. In
Proceedings of the Twelfth international Workshop on
Enabling Technologies: infrastructure For Collaborative
Enterprises (June 09 - 11, 2003). WETICE. IEEE
Computer Society, Washington, DC, 308.

[17] Filho, D. L. B. Experiências com desenvolvimento ágil,
Instituto de Matemática e Estátistica da Universidade São
Paulo, 170p, Masters dissertation.

[18] Portela, C. S. Uma proposta de gerenciamento ágil dos
projetos de desenvolvimento de software do CTIC /
UFPA, Instituto de Ciências Exatas e Naturais –

Faculdade de Computação – Universidade Federal do
Pará; 94p, Masters dissertation.

[19] Coram, M; Bohner, S. The Impact of Agile Methods on
Software Project Management. 2005.

[20] Awad, M. A. A Comparison between Agile and
Traditional Software Development Methodologies.
Technical Report. University of Western Australia. 77p.
2005.

[21] Palmer, S. R.; Felsing, J. M. A Practical Guide to Feature-
Driven Development. Prentice-Hall. 304 p. 2002.

[22] Hunt, J. Agile Software Construction. Springer. 254 p.
2005.

[23] Lindstrom, L.; Jeffries, R. Extreme Programming and
Agile Software Development Methodologies. In:
Information Systems Management, v. 21, Issue 3, pp 41-
52. 2004.

[24] Beck, K. Embracing Change with Extreme Programming.
In: Computer, v. 32, Issue 10, pp 70-77. 1999.

[25] Costa Filho, E.; Penteado, R. A. D.; Silva, J.; Braga, R.
Padrões e Métodos Ágeis: Agilidade no Processo de
Desenvolvimento de software. In: 5th Latin American
Conference on Pattern Languages of Programming.
August 16-19, 2005.

[26] Schwaber, K. SCRUM Development Process. In: Object-
Oriented Programming, Systems, Languages, and
Applications – Workshop on Business Object Design and
Implementation. October 15-19, 1995. Available at:
<http://www.jeffsutherland.com/oopsla/schwapub.pdf>.
Last access: 17 feb 2009.

[27] Schwaber, K.; Beedle, M. Agile Software Development
with SCRUM. Prentice-Hall. 158 p. 2001.

[28] Sutherland, J.; Schwaber, K. The Scrum Papers: Nut,
Bolts, and Origins of an Agile Framework. 224p. 2011.
Available at:
<http://jeffsutherland.com/ScrumPapers.pdf>. Last access:
24 apr 2012.

[29] Tekool.net. Printable Agile Planning Poker. Available at:
< http://www.tekool.net/blog/2009/07/21/printable-agile-
planning-poker/>. Last access: apr. 2012.

