
Revista de Sistemas de Informação da FSMA
 n. 14 (2014) pp. 48-52

http://www.fsma.edu.br/si/sistemas.html

48

Abstract — This article discusses how university curricula
could improve its performance in. terms of producing
computer science graduates who are more attuned to the
needs of the industry in which most of them will be
employed. The evaluation systems that are currently in
place in this country strengthen the tendency to regard
teaching as a low priority activity completing a vicious
circle of decline.

Keywordss — Teaching, Programming, Universities,
Evaluation.

I. INTRODUCTION

N the US, some of the most important employers in the
computer software area are starting to hire non-graduates,

even to technical jobs. Even if there is no concrete evidence
that this is a major trend and no specific statistics of the jobs
they are receiving, there are some signs that some companies,
such as Google are considering hiring talented programmers
based on their talents alone and not on whether they have a
Computer Science degree or not.

According to a Google vice-president, this is due to the fact
that “”the academic setting is an artificial place where people
are highly trained to succeed in a specific environment” [1].
The same article points out that most of the new hires at
Google are still college graduates, but we should ask ourselves
whether this is an outlier or a real phenomenon.

There are some warning signs for academia that this might
become a trend. In a recent article [2], Harvard Business
Review asked employers to stop requiring attendance to a
university as a requirement for a job. This may be dismissed as
a rant, but this paper will point out that there is a major
disconnect between what is taught in Computer Science
courses worldwide and what is effectively needed in most jobs
that involve programming skills.

There are many in academia who will argue that this topic is
irrelevant, because universities are not “career schools”.
Unfortunately, this kind of disconnect with the realities of job

 Ricardo Linden is a Full Professor at FSMA, Macaé-RJ

(Ricardo.linden@gmail.com)

markets is also an issue, because more than 95% of our
students will not become either graduate students or
researchers.

Hence, I argue that we need to increase our workload on
making our graduates better IT professionals. We need to
make our students better programmers, who are equipped to be
undeterred by highly complex environments while developing
large pieces of software. In order to achieve this, when
creating our syllabi, we should focus less on the small and
tricky challenges and include material that is more in line with
the reality of software development.

It may appear that the idea of improving the employability
of our students is something that should not concern the best
universities (like the research-centered, ivy-leaguers or
Brazilian Grade-6 ones). However it is clear that the ability to
be better team players, better communicators and better coders
will benefit everyone (maybe even future professors), not just
for some professionals that are supposed to drone on boring
jobs.

Besides, being a coder is also a part of the life of today’s
researcher. We have to implement a lot of software in order to
test and even to arrive at our ideas and if we could write
software that is safe, correct and readable (so that our research
can use it as the foundation of future progress), our research
would only stand to gain1.

This paper is organized as follows: in section II, we discuss
the current structure of programming teaching in our
universities.

II.HOW UNIVERSITIES TEACH PROGRAMMING

According to three university ranking sites

(TopUniversities, The Guardian and Shanghai Ranking), MIT
offers either the best or second best computer science program
in the world. Hence, we are going to take a look at its
curriculum in order to see whether we can find a trend.
Obviously, there are some differences between institutions, but
as most readers will acknowledge, their syllabi are very
representative of the reality of Computer Science Teaching.

1 If every researcher wrote open source, high quality software, knowledge

would spread faster. Hence, science as a whole may also benefit from students
becoming better coders.

I

TEACHING PROGRAMMING

Ricardo Linden, FSMA

Linden. R. / Revista de Sistemas de Informação da FSMA n. 14 (2014) pp. 48-52

49

According to the flowchart at its website
(http://www.eecs.mit.edu/docs/ug/6-3.pdf), the Computer
Science and Engineering program at MIT requires as
foundational work one disciple of software and one of
algorithms, on top of which is added a discipline of advanced
algorithms.

Algorithms, according to the MIT catalogue, offers an
“ Introduction to mathematical modeling of computational
problems, as well as common algorithms, algorithmic
paradigms, and data structures used to solve these problems.
Emphasizes the relationship between algorithms and
programming, and introduces basic performance measures and
analysis techniques for these problems. ” Advanced
algorithms, on the other hand, teaches “Techniques for the
design and analysis of efficient algorithms, emphasizing
methods useful in practice. Topics include sorting; search
trees, heaps, and hashing; divide-and-conquer; dynamic
programming; greedy algorithms; amortized analysis; graph
algorithms; and shortest paths. Advanced topics may include
network flow; computational geometry; number-theoretic
algorithms; polynomial and matrix calculations; caching; and
parallel computing. ”.

These syllabi are beautifully complemented by the software
discipline which “Introduces fundamental principles and
techniques of software development, i.e., how to write
software that is safe from bugs, easy to understand, and ready
for change. Topics include specifications and invariants;
testing, test-case generation, and coverage; state machines;
abstract data types and representation independence; design
patterns for object-oriented programming; concurrent
programming, including message passing and shared
concurrency, and defending against races and deadlock; and
functional programming with immutable data and higher-order
functions.”

This is a structure very similar to the one at the university
where I teach. Even though requirements may vary and some
professors may be more rigorous than others, workload may be
more demanding at some institutions and etc., I argue that this
is a common ground for most institutions that teach Computer
Programming. Let us first understand what software companies
expect from their hires and we will come back to discuss
whether the structure described above is actually consistent
with this reality.

III. WHAT DO EMPLOYERS WANT?

It is important to understand that there is a great divide

between what employers say they want and what they really
want. Hence, job descriptions in ads might be somewhat
deceitful (specially because many companies usually have in
house training to guarantee that new hires have what they
really want). Nevertheless, we may see what some important
bloggers and career advisers say and discuss it.

Matt Weisfeld (2013), for instance, polled many companies
and came with some interesting characteristics, which he
grouped by company size.

The first important skill companies are seeking is the ability
to learn. We must understand that the technology field changes
rapidly and whatever programming language we teach our
students is actually irrelevant, because it will be phased out in
five years.

The set of skills that are dominant include strong
programming logic required; sometimes specific technologies
are preferred. Employers expect that programmers can learn to
work in most environments.

Nevertheless, the same companies state that soft skills, such
as writing, presentation and other communication skills, may
ultimately be the most important skill, especially as you move
up the ladder in an organization.

Reading another set of advice by programming guru Joel
Splosky [4], we see that he also focuses on writing skills and
also on learning non-CS subjects such as microeconomics.

The most interesting material comes from a career advice
site, called MyMajors [5]. This site rates as most important
abilities, reading comprehension, critical thinking, quality
control analysis, active listening, systems evaluation and
systems analysis, among others. It also states that customer and
personal service, administration and management and design
are important fields of knowledge for those interested in
pursuing a career in Computer Science.

These examples are representative of many more offering
similar advice. Thus we should ponder what they are saying
and compare the skill set required versus those offered at our
colleges.

To put it bluntly, these sites are just saying something that
should be obvious: implementing Fibonacci sequence
calculators, complex stack managers and similar course
favorites is not a common problem faced by software
companies. They deal with complex software that must
actually solve a real need, be readable and maintainable,
interact with other software artifacts and be thoroughly tested.

Do our colleges really deal with these issues? Analyzing the
syllabi of MIT, we may come to the conclusion that the two
algorithm subjects are actually intended to give a strong
foundation on programming and the software syllabus is a
giant step towards teaching the students the fundamentals of
good software. But it is enough?

In the US, many CS majors from top universities do summer
jobs and internships that oblige them to become aware of real
problems, real programming and job environments, which is
probably true for MIT students. Hence, it is possible MIT and
other universities focus on theory in the core curriculum and
practice is to be learned in summer jobs, internships etc.

This is not true in other countries. For instance, in Brazil,
many, if not most, students do not get in touch with their future
profession until close to their graduation time.

Besides, “outsourcing” the teaching on this important issue
could mean that we, as educators, are giving up the
opportunity to influence positively the job market and improve
the state of the art of software in the world.

Hence I argue that what is currently offer is not enough to
prepare our CS students for their future job market. Let us
discuss some issues first before coming to a full proposal.

Linden, R. / Revista de Sistemas de Informação da FSMA n. 14 (2014) pp. 48-52

50

IV. WHAT SHOULD WE OFFER?

We clearly should offer something more. In spite of the fact

that MIT and similar courses offer something towards a good
background, they are not providing the tools our students need
to thrive on the job market.

Critics may state that the market fluctuates and universities
cannot be expected to match those changing needs. I answer
by saying two things: first of all, universities should change
according to what society expect because it is our job to
prepare the future professionals and, more important, there is a
set of skills that is unchangeable and that we are not
addressing.

For instance, why don't we offer courses on business
modeling? Even those that are prone to pursue a scientific
career would benefit from being able to understand the
nuances of a business and extract the essence of the problem
that should be solved.

Teaching business modeling would also have the added
benefit of helping students read fuzzy specifications (which are
common throughout all bigger problems) and identify the
solution through its relevant variables and their restrictions.
Afterwards, using the tools available at this discipline, students
can also build a conceptual model that will help them elaborate
a solution.

A professor from a major Brazilian university read the
manuscript of this paper and offered an example that
corroborates some of the ideas above. He teaches Introduction
to Optimization and sees the difficulty his students have in
understanding the problems, classifying them and making an
analogy with previous problems, either simpler or more
tractable, so that they can arrive at a solution less painfully.

As he points out, many students nowadays see the code as
an end in itself and do not spend much time thinking about
their solution in regard to the stated problem. In order to help
them with this issue, he uses many examples coming from a
Business Dynamics course.

Notably, this professor is not from a Computer Science
college, which lends support to the claim that Business
Modeling is an idea that might offer instruments to better
problem solving.

Another important issue is testing. MIT offers it as part of a
bigger discipline, and as a result it probably does not cover all
aspects of unit testing, mocking, integration testing, interface
testing and other intricacies of the problem of software quality
assurance. In fact, the concept of quality is also complex and
administration majors tend to dwell on it for a long time, not
because they are nitpickers, but because the concept is so
relevant that it requires conscious analysis.

Concepts related to complex systems development are also
absent from our curricula. We seldom tell our students to
develop systems that involve more than two persons and never
give them assignments that require tens of thousands of lines
of code. Nevertheless, when a student becomes a professional,
he will probably have to deal with a much more complex
reality. Why don't we try to offer them a taste and the ability to
reflect on that?

We should also consider reviewing the syllabi from the
subjects we teach. For instance, our network classes still teach
the seven layers of OSI model and thoroughly discuss TCP/IP
implementation. On the other hand, the intricacies of keeping
your software secure are forgotten. The consequences of this
education are well documented by David Rice [6] and amount
to billions of dollars and many lives (do not worry – he also
spreads the blame on companies malpractice, but we cannot
forget our share).

Last but not least, we do not dwell on soft skills. With a few
exceptions, we do not worry about spelling and grammar
errors in the papers student give us, we do not teach them how
to prepare a presentation and how to talk in public2. Some
would say that these are skills that are acquired naturally, but
why can't college professors do their share? I know that you
are all very busy, but these are important issues that should be
put ahead of many tasks on our to-do list.

We can summarize these ideas in the following proposals
which are all intended to turn our graduates into better
professionals:

• Graduation projects should be divided in two parts. The
first one would be an application of no less than 5.000
lines a student should develop by himself. This should
include a complete solution to a business problem (which
could also be a game, an educational tool or another
complete app). The second part would be an application
of no less than 30.000 lines that should be developed by a
group of no less than five students. These application
should also be developed using all the group work tools
that are common to the business environment, such as
version control tools, project control software and such;

• No student should graduate without developing at least
one full app for a cell phone, one app for the internet and
a standalone app. Students should be encouraged to solve
a real problem of the community (and hence, work on
their entrepreneurship skills), but apps as simple as a
hangman game should help, if the interface is properly
designed and they really work. The web app should also
include database access and data storage, in order to
make the students understand work with and improve this
feature. There is no need for something fancy – keeping
scores at the hangman game and allowing players to
compare themselves with others will suffice;

• Network disciplines should be about hacking – attack and
defense. This would increase the students’ proficiency on
networks and also their fun;

• No student should be allowed to graduate without
amassing at least 500 points in Stack Overflow or an
equivalent technical help site. This would give them
writing skills while also fostering the ability to
understand other people’s problems, analyzing and
solving them accordingly, while developing the

2 The professor who kindly read and commented this paper is an exception

to this case. He regularly offers a seminar course called “Reading, writing and
researching” that purports to teach masters and PhD students how to read,
write and do research (as well as present it in talks). This is an interesting
example of complementation to the formal education.

Linden, R. / Revista de Sistemas de Informação da FSMA n. 14 (2014) pp. 48-52

51

programming skills while solving the problems. Besides,
these sites are also scouting ground for many companies,
so students who excel at these sites would also have a
leverage at the job market. This could also be used with
in-class activities: you could encourage students to elp
each other to solve homework assignments using a
common tool (Moodle, Wiki, or others) and offer them
bonuses for performance, which would result in teacher
workload reduction, personal network creation and better
writing skills for those who answer questions;

• Parallel programming should be about creating parallel
working apps, and professors could appeal to a common
desire to do better and make students create distributed
online apps that help solve any important problem that
requires massive processing power (such as
FightAids@Home [7]);

• Teachers should consider more tasks that are
interdisciplinary in nature. For instance, calculus should
be integrated with programming by creating programs
that solve integrals using approximations. Besides,
professors should be more thoughtful about the soft skills
that are fundamental to performance in the work
environment. Students should lose points because of
grammar mistakes or bad presentation;

• Students should be required to use at least one team work
technique that is common in the workplace. For instance,
teams should be oriented to use Scrum and make their
meetings daily and use the tools of group work. This is
not only a suggestion for programming classes – study
groups could be mandatory in all disciplines, with the
group management also being a topic of evaluation;

• Students should receive academic credits for good
participation in programming competition such as
Brazilian Programming Olympics or Topcoders. No one
enrolls and performs well in these competitions without
achieving a high level of programming craftsmanship.
Hence, such competitions should be used as motivational
tools;

• Mandatory courses should include psychology 101 and
human resources management. In spite of the many
legends about computer “nerds”, no one is ever going to
work alone in this trade and basic comprehension of
human factors may vastly increase the students’
productivity;

• No student of computer science should ever graduate
without some business understanding and some business
modeling skills. Programming is not performed in a
vacuum and our students should be ready to deal with the
complexities of the business world.

This is neither a final nor a complete proposal. We have

many forums where such ideas can be debated. In Brazil, we
have, for instance, the national conference of the Brazilian
Computer Society, which has specific forums on education.
Besides, these proposals should be adapted to local realities,
after consultations with leading software companies about their
needs and their realities.

V. NATIONAL EVALUATION SYSTEMS

It is not just in quantum physics that an observer interferes

with the observed system. In human environments, this is also
always true – whenever you establish a set of quality markers,
the persons under evaluation will strive to achieve the goals
you gave them.

In Brazil, for instance, there are three main criteria for
college evaluation: infrastructure, which is outside the control
of professors, a national exam that happens every three years
and publication records.

The national exam includes some programming questions.
In 2014 it required the students to implement a solution to a
Sudoku game using recursion and backtracking. This is pretty
challenging for the short period of time the students have
available, but it is not even close to a real problem. Actually, it
is exactly the opposite – a token problem that is dear to the
heart of college professors, even though it does not require any
analytical thinking in terms of translating a problem
description into a solution.

The problems of evaluating publication records are well
known to anyone who has ever heard the sentence “publish or
perish” and I will not dwell on them. Suffice it to say that
teachers who are evaluated by their publication records tend to
see students as obstacles to their “real” goals.

Nowadays it is very common for full professors to refuse
teaching undergraduation courses because it does not
contribute to his or her career. In the current reality, this is
fully understandable – the only class a sane professor who
understands the evaluation model should ever want to teach
are senior level and masters level, where he can lure graduate
students to work with him and increase his productivity, as
measured by the powers that be.

 In addition, we are in a context in which professors are
hired based on their degrees and not on their teaching or
research qualifications. In Brazil, for instance, colleges have to
have a minimum percentage of masters and doctors in order to
qualify as good or excellent. Based on this criterion, a person
whose qualification is having implemented the Windows file
system is considered to be less apt for employment than a
recent graduate from a master’s program with no real software
development experience. Colleges have some leeway in this
issue, but not enough.

Adding to the previous issue, we have another and most
important one: professors are not evaluated by their teaching.
No one is sacked or even warned for giving bad classes, being
boring or not giving enough professional guidance to their
students. Hence, the conclusion is obvious: go for publication,
not teaching.

Even though this is a description of what happens in Brazil,
it could easily compared with a similar reality in other
countries.

The need to change this process is quite obvious. We need
to make teaching an important part of the job, giving
incentives (both monetary and career-wise) to professors who
teach well evaluated undergraduate courses. Professional
education should be included in the evaluation processes and

Linden, R. / Revista de Sistemas de Informação da FSMA n. 14 (2014) pp. 48-52

52

measured, because of its centrality in the broader context that
we have described..

VI. CONCLUSION

I understand that many of these proposals are offensive to

many professors, who think that our teaching should be more
about creating the theoretical foundation on which the students
may later develop their programming skills. Nevertheless,
those offended should consider the fact that professors are
seen as living in an ivory tower and maybe this is not totally
unfair.

One of our jobs is to provide postsecondary education to
our students and provide good professionals to the society at
large. This is also not a small part of our job – it should be
remembered that more than 95% of our students will never set
foot in a graduate program. Hence, we should provide them a
course that honors their investment of time and money.

I am not proposing that we turn Computer Science colleges
into trade schools. None of the proposals above suggests that
theoretical work is not necessary. All are additions and
enhancements of current course offerings.

The idea of teaching for the job market is neither selling out,
nor a shameful proposition that should be easily dismissed by
college professors. There is a reason students pay high tuitions
or the State funds expensive institutions. This means that
college and university professors cannot restrict themselves to
a regime of academic self absorption.

It is important that we take pride in the success of our
students in the business world. Every time one of them
succeeds, it should be a reflection on the work we put into
their education. The well being of the computer world at large
should be paramount to our endeavors. As long as it is not,
software companies and the whole society will suffer with the
under par products of our undergraduate programs.

REFERENCES

[1] NISEN, M., “Google Has Started Hiring More People Who Didn't Go
To College ”, available at http://www.businessinsider.com/google-
hiring-non-graduates-2013-6, 2013;

[2] McAFEE, A., “Stop Requiring College Degrees”,
https://hbr.org/2013/02/stop-requiring-college-degrees/, 2013

[3] WEISELD, M., “What Skills Employers Want in a Software Developer:
My Conversations with Companies Who Hire Programmers”, available
at http://www.informit.com/articles/article.aspx?p=2156240 ,2013

[4] SPLOSKY, J., “Advice for Computer Science College Students”,
available at
http://www.joelonsoftware.com/articles/CollegeAdvice.html, 2005

[5] MyMajors, “Computer Programmer Career”, available at
http://www.mymajors.com/career/computer-programmers/skills/ , 2014

[6] RICE, D., “The Real Cost of Insecure Software”, Addison-Wesley
Publishing, USA, 2007

[7] BARBOSA, G. C.; SILVA, B. Z.; DALPRA, H. L. O; VILARINO, I. F.,
PAIVA. M. M., ARBEX, W., "Computação distribuída e colaborativa
aplicada à biomedicina com o FightAIDS@Home", Revista de Sistemas
de Informação da FSMA n 8(2011) pp. 2 – 7

